		mark		Sub
1(i)	$2000=1000 a \text { so } a=2 \text { so } 2 \mathrm{~m} \mathrm{~s}^{-2}$ $12.5=5+2 t \text { so } t=3.75 \text { so } 3.75 \mathrm{~s}$	B1 M1 A1	Use of appropriate uvast for t cao	3
(ii)	$\begin{aligned} & 2000-R=1000 \times 1.4 \\ & R=600 \text { so } 600 \mathrm{~N}(\mathrm{AG}) \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { E1 } \end{aligned}$	N2L. Accept $F=m g a$. Accept sign errors. Both forces present. Must use $a=1.4$	2
(iii)	$2000-600-S=1800 \times 0.7$ $S=140 \text { so } 140 \mathrm{~N} \text { (AG) }$	M1 A1 E1	N2L overall or 2 paired equations. $F=m a$ and use 0.7. Mass must be correct. Allow sign errors and 600 omitted. All correct Clearly shown	3
(iv)	$T-140=800 \times 0.7$ $T=700 \text { so } 700 \mathrm{~N}$	M1 B1 A1	N2L on trailer (or car). $F=800 a$ (or $1000 a$). Condone missing resistance otherwise all forces present. Condone sign errors. Use of 140 (or $2000-600$) and 0.7	3
(v)	N2L in direction of motion car and trailer $-600-140-610=1800 a$ $a=-0.75$ For trailer $T-140=-0.75 \times 800$ so $T=-460$ so 460 thrust	M1 A1 A1 M1 A1 F1	Use of $F=1800 a$ to find new accn. Condone 2000 included but not T. Allow missing forces. All forces present; no extra ones Allow sign errors. Accept \pm. cao. N2Lwith their $a(\neq 0.7)$ on trailer or car. Must have correct mass and forces. Accept sign errors cao. Accept ± 460 Dep on M1. Take tension as +ve unless clear other convention	6
	total	17		

Question		Answer	Marks	Guidance
3	(i)	Either $s=\frac{1}{2}(u+v) t \quad$ Take O as the origin. $\begin{aligned} & 30=\frac{1}{2} \times(u+9) \times 10 \\ & u=-3 \\ & v=u+a t \\ & 9=-3+10 a \\ & a=1.2 \end{aligned}$	M1 A1 M1 A1	Use of one relevant equation, including substitution Use of a second relevant equation including substitution
		or $v=u+a t \Rightarrow u+10 a=9$ $s=u t+\frac{1}{2} a t^{2} \Rightarrow u+5 a=3$ Solving simultaneously: $a=1.2$ $u=-3$	M1 M1 A1 A1	Use of one relevant equation, including substitution Use of a second relevant equation including substitution
		$\begin{aligned} & \text { or } s=v t-\frac{1}{2} a t^{2} \\ & \Rightarrow a=1.2 \\ & v=u+a t \\ & \Rightarrow u=-3 \end{aligned}$	M1 A1 M1 A1	Use of one relevant equation, including substitution Use of a second relevant equation including substitution
			[4]	
	(ii)	Either $s=u t+\frac{1}{2} a t^{2}$ Solving for P: $-5=-3 t+\frac{1}{2} \times 1.2 t^{2}$ $0.6 t^{2}-3 t+5=0$ Discriminant $=3^{2}-4 \times 0.6 \times 5=-3$ No real roots for $t(\Rightarrow$ Particle is never at P$)$	M1 M1 E1	Quadratic equation with $s=-5$ Considering the discriminant or equivalent Cao without wrong working in the whole question.

Question		Answer	Marks	Guidance

		mark		Sub
4(i)	$\begin{aligned} & 14=2 u+0.5 a \times 4 \\ & 19=u+5 a \end{aligned}$ Solving gives $u=4$ and $a=3$	M1 A1 A1 M1 F1	U of appropriate uvast for either equn Any form y form Attempt at solution of 2 equas in 2 unknowns. At least one value found. Must have complete correct solution to their equns.	5
(ii)	$\begin{aligned} & 19^{2}=4^{2}+2 \times 3 \times s \text { or } \\ & s=4 \times 5+0.5 \times 3 \times 25 \\ & s=57.5 \text { so } 57.5 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Use of appropriate uvast and their $u, a \& t=$ 5. cao [Accept 50 if $t=7$ instead of $t=5$ in (i) for 2/2]	2
				7

